Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 139(21): 7160-7163, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28511538

RESUMO

Gigahertz- to terahertz-frequency infrared and Raman spectra contain a wealth of information concerning the structure, intermolecular forces, and dynamics of ionic liquids. However, these spectra generally have a large number of contributions ranging from slow diffusional modes to underdamped librations and intramolecular vibrational modes. This makes it difficult to isolate effects such as the role of Coulombic and hydrogen-bonding interactions. We have applied far-infrared and ultrafast optical Kerr effect spectroscopies on carefully selected ions with a greater or lesser degree of symmetry in order to isolate spectral signals of interest. This has allowed us to demonstrate the presence of longitudinal and transverse optical phonon modes and a great similarity of alkylammonium-based protic ionic liquids to liquid water. The data show that such phonon modes will be present in all ionic liquids, requiring a reinterpretation of their spectra.

2.
J Phys Chem B ; 119(29): 8826-41, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-24945675

RESUMO

Dielectric relaxation (DR) and optical Kerr-effect (OKE) spectra of the archetypal protic ionic liquids ethyl- and propylammonium nitrate (EAN and PAN) have been measured over an unusually large frequency range from 200 MHz to 10 THz at temperatures (mostly) between 5 and 65 °C. Analysis of the low-frequency α-relaxation, associated with the cooperative relaxations of the cations (DR) and anions (OKE) and any clusters present, indicated that ion reorientation in EAN is decoupled from viscosity and occurs via cooperative relaxation involving large-angle jumps rather than rotational diffusion. Detailed consideration of the high-frequency parts of the DR and OKE spectra showed that the observed intensities were a complex combination of overlapping and possibly coupled modes. In addition to previously identified intermolecular H-bond vibrations, there are significant contributions from the librations of the cations and anions. The present assignments were shown to be consistent with the isotopic shifts observed for deuterated EAN.

3.
Chem Commun (Camb) ; 51(6): 1139-42, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25466237

RESUMO

Controlled induction of crystal nucleation is a highly desirable but elusive goal. Attempts to speed up crystallization, such as high super saturation or working near a liquid-liquid critical point, always led to irregular and uncontrollable crystal growth. Here, we show that under highly nonequilibrium conditions of spinodal decomposition, water crystals grow as thin wires in a template-less formation of "Haareis". This suggests that such nonequilibrium conditions may be employed more widely as mechanisms for crystal growth control.

4.
Nat Commun ; 5: 3999, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24893252

RESUMO

Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein-molecule interactions, and has wider implications for biochemical reactivity and biological function.


Assuntos
Muramidase/metabolismo , Trissacarídeos/metabolismo , Vibração , Animais , Galinhas , Ligação Proteica , Análise Espectral Raman
5.
J Phys Chem B ; 118(17): 4600-4, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24702302

RESUMO

The Stokes-Einstein-Debye (SED) expression is used routinely to relate orientational molecular diffusivity quantitatively to viscosity. However, it is well-known that Einstein's equations are derived from hydrodynamic theory for the diffusion of a Brownian particle in a homogeneous fluid and examples of SED breakdown and failure for molecular diffusion are not unusual. Here, using optical Kerr-effect spectroscopy to measure orientational diffusion for solutions of guanidine hydrochloride in water and mixtures of carbon disulfide with hexadecane, we show that these two contrasting systems each show pronounced exception to the SED relation and ask if it is reasonable to expect molecular diffusion to be a simple function of viscosity.

6.
Phys Chem Chem Phys ; 14(22): 8067-73, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22569882

RESUMO

Many of the anomalous properties of water may be explained by invoking a second critical point that terminates the coexistence line between the low- and high-density amorphous states in the liquid. Direct experimental evidence of this point, and the associated polyamorphic liquid-liquid transition, is elusive as it is necessary for liquid water to be cooled below its homogeneous-nucleation temperature. To avoid crystallization, water in the eutectic LiCl solution has been studied but then it is generally considered that "bulk" water cannot be present. However, recent computational and experimental studies observe cooperative hydration in which case it is possible that sufficient hydrogen-bonded water is present for the essential characteristics of water to be preserved. For femtosecond optical Kerr-effect and nuclear magnetic resonance measurements, we observe in each case a fractional Stokes-Einstein relation with evidence of the dynamic crossover appearing near 220 K and 250 K respectively. Spectra obtained in the glass state also confirm the complex nature of the hydrogen-bonding modes reported for neat room-temperature water and support predictions of anomalous diffusion due to "worm-hole" structure.

7.
Faraday Discuss ; 154: 145-53; discussion 189-220, 465-71, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22455019

RESUMO

The structure and dynamics of ionic liquids (ILs) are unusual due to the strong interactions between the ions and counter ions. These microscopic properties determine the bulk transport properties critical to applications of ILs such as advanced fuel cells. The terahertz dynamics and slower relaxations of simple alkylammonium nitrate protic ionic liquids (PILs) are here studied using femtosecond optical Kerr-effect spectroscopy, dielectric relaxation spectroscopy, and terahertz time-domain spectroscopy. The observed dynamics give insight into more general liquid behaviour while comparison with glass-forming liquids reveals an underlying power-law decay and relaxation rates suggest supramolecular structure and nanoscale segregation.


Assuntos
Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Espectroscopia Dielétrica , Estrutura Molecular , Análise Espectral Raman
8.
Faraday Discuss ; 150: 493-504; discussion 505-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22457964

RESUMO

The behaviour of liquid water below its melting point is of great interest as it may hold clues to the properties of normal liquid water and of water in and on the surfaces of biomolecules. A second critical point, giving rise to a polyamorphic transition between high and low density water, may be hidden in the supercooled region but cannot be observed directly. Here it is shown that water can be locked up in nano-pools or worm-like structures using aqueous LiCl salt solutions and can be studied with terahertz spectroscopies. Very high dynamic range ultrafast femtosecond optical Kerr effect (OKE) spectroscopy is used to study the temperature-dependent behaviour of water in these nano-pools on timescales from 10 fs to 4 ns. These experiments are complemented by temperature-dependent nuclear magnetic resonance (NMR) diffusion measurements, concentration-dependent Fourier-transform infrared (FTIR) measurements, and temperature-dependent rheology. It is found that liquid water in the nanoscale pools undergoes a fragile-to-strong transition at about 220 K associated with a sharp increase in the inhomogeneity of translational dynamics.

9.
Phys Chem Chem Phys ; 12(16): 4191-200, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20379512

RESUMO

The evidence that a molecular liquid in its thermodynamically-stable state can undergo a liquid-liquid transition (LLT) is still uncertain. Therefore, trans-1,2-dichloroethene is of interest due to reports of a LLT above the melting point [S. Kawanishi, T. Sasuga and M. Takehisa, J. Phys. Soc. Jpn., 1982, 51, 1579-1583; S. Rzoska, J. Ziolo, A. Drozd-Rzoska, J. L. Tamarit and N. Veglio, J. Phys.: Condens. Matter, 2008, 20, 244124; K. Merkel, A. Kocot, R. Wrzalik and J. Ziolo, J. Chem. Phys., 2008, 129, 074503-074508]. Ultrafast optical Kerr-effect (OKE) spectroscopy enables accurate measurement of the low-frequency modes arising from interactions in liquids and therefore should be sensitive to the change in liquid structure inherent in such a transition. In the OKE data presented here, no sharp transitions are discernible, nor are there any in calorimetry data. However, the same data do reveal that neither trans- nor cis-1,2-dichloroethene is a simple liquid: in each case, a non-Arrhenius temperature dependence (with a Debye lineshape) is observed for the alpha relaxation. This dependence can be fitted by the Vogel-Fulcher-Tammann (VFT) law over the measurable temperature range suggesting that at low temperature, cooperative relaxation, due to the formation of clusters or structure, is present. Accurate analysis of the OKE spectrum in the terahertz region is generally limited by approximations inherent in the models. Here the diffusional modes are convoluted with librational modes to give a more physically meaningful approximation to the inertial response.

10.
J Chem Phys ; 131(20): 201101, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19947668

RESUMO

The dynamics of the noble-gas liquids underlies that of all liquids making them an important prototypical model system. Using optical Kerr-effect spectroscopy we show that for argon, krypton, and xenon, both the librational and diffusional contributions to the spectrum are surprisingly complex. The diffusional relaxation appears as a stretched-exponential, such as widely found in studies of structured (e.g., glass-forming) liquids and as predicted by mode-coupling theory. We show that this behavior is remarkably similar to that measured in water and suggest that it is a fundamental or universal property.

11.
J Am Chem Soc ; 131(31): 11140-6, 2009 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-19594150

RESUMO

We have measured the intermolecular dynamics of the 1,3-dialkylimidazolium-based room-temperature ionic liquids (RTILs) [emim][BF(4)], [emim][DCA], and [bmim][DCA] at 25 degrees C from below 1 GHz to 10 THz by ultrafast optical Kerr effect (OKE) spectroscopy and dielectric relaxation spectroscopy (DRS) augmented by time-domain terahertz and far-infrared FTIR spectroscopy. This concerted approach allows a more detailed analysis to be made of the relatively featureless terahertz region, where the higher frequency diffusional modes are strongly overlapped with librations and intermolecular vibrations. Of greatest interest though, is an intense low frequency (sub-alpha) relaxation that we show is in accordance with recent simulations that have reported mesoscopic structure arising from aggregates or clusters--structure that explains the anomalous and inconveniently high viscosities of these liquids.

12.
J Chem Phys ; 128(16): 161102, 2008 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-18447413

RESUMO

When salts are added to water, generally the viscosity increases, suggesting that the ions increase the strength of the water's hydrogen-bond network. However, infrared pump-probe measurements on electrolyte solutions have found that ions have no influence on the rotational dynamics of water molecules, implying no enhancement or breakdown of the hydrogen-bond network. Here, we report optical Kerr effect and dielectric relaxation spectroscopic measurements, which have enabled us to separate the effects of rotational and transitional motions of the water molecules. These data show that electrolyte solutions behave like a supercooled liquid approaching a glass transition in which rotational and translational molecular motions are decoupled. It is now possible to understand previously conflicting viscosity data, nuclear magnetic resonance relaxation, and ultrafast infrared spectroscopy in a single unified picture.

13.
J Chem Phys ; 128(15): 154516, 2008 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-18433244

RESUMO

Structural relaxation in the peptide model N-methylacetamide (NMA) is studied experimentally by ultrafast optical Kerr effect spectroscopy over the normal-liquid temperature range and compared to the relaxation measured in water at room temperature. It is seen that in both hydrogen-bonding liquids, beta relaxation is present, and in each case, it is found that this can be described by the Cole-Cole function. For NMA in this temperature range, the alpha and beta relaxations are each found to have an Arrhenius temperature dependence with indistinguishable activation energies. It is known that the variations on the Debye function, including the Cole-Cole function, are unphysical, and we introduce two general modifications: One allows for the initial rise of the function, determined by the librational frequencies, and the second allows the function to be terminated in the alpha relaxation.

14.
Rev Sci Instrum ; 78(4): 043103, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17477645

RESUMO

We present a method of generating 200 ns high-voltage (up to 40 kV) pulses operating at repetition rates of up to 100 kHz, which may be synchronized with laser pulses. These supplies are simple to make and were developed for ultrafast terahertz pulse generation from GaAs photoconductive antennas using a high-repetition-rate regeneratively amplified laser. We also show an improvement in signal-to-noise ratio over a continuous dc bias field and application of the supply to terahertz pulse generation.

15.
J Am Chem Soc ; 126(1): 336-43, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14709100

RESUMO

Energy migration between tryptophan residues has been experimentally demonstrated in self-assembled peptide tapes. Each peptide contains 11 amino acids with a Trp at position 6. The peptide self-assembly is pH-sensitive and forms amphiphilic tapes, which further stack in ribbons (double tapes) and fibrils in water depending on the concentration. Fluorescence spectra, quenching, and anisotropy experiments showed that when the pH is lowered from 9 to 2, the peptide self-assembly buries the tryptophan in a hydrophobic and restricted environment in the interior of stable ribbons as expected on the basis of the peptide design. These fluorescence data support directly and for the first time the presence of such ribbons which are characterized by a highly packed and stable hydrophobic interior. In common with Trp in many proteins, fluorescence lifetimes are nonexponential, but the average lifetime is shorter at low pH, possibly due to quenching with neighboring Phe residues. Unexpectedly, time-resolved fluorescence anisotropy does not change significantly with self-assembly when in water. In highly viscous sucrose-water mixtures, the anisotropy decay at low pH was largely unchanged compared to that in water, whereas at high pH, the anisotropy decay increased significantly. We concluded that depolarization at low pH was not due to rotational diffusion but mainly due to energy migration between adjacent tryptophan residues. This was supported by a master equation kinetic model of Trp-Trp energy migration, which showed that the simulated and experimental results are in good agreement, although on average only three Trp residues were visited before emission.


Assuntos
Oligopeptídeos/química , Triptofano/química , Simulação por Computador , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Secundária de Proteína , Termodinâmica
16.
Anal Chem ; 75(16): 4182-7, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-14632133

RESUMO

In time-resolved, single-photon counting experiments, the standard method of nonlinear least-squares curve fitting incorrectly estimates the fluorescence lifetimes. Even for single-exponential data, errors may be up to +/- 15%, and for more complex fits, may be even higher, although the fitted line appears to describe the data. The origin of this error is not a result of the Poisson distribution, as is often stated, but is entirely due to the weighting of the fit. An alternative weighting method involving a minor change in the fitting method eliminates this problem, enabling accurate fitting even in difficult cases, including the small data sets observed in single molecule experiments and with a precision similar to that of maximum likelihood methods.

17.
J Am Chem Soc ; 124(19): 5518-27, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11996595

RESUMO

Quenching of redox active, intercalating dyes by guanine bases in DNA can occur on a femtosecond time scale both in DNA and in nucleotide complexes. Notwithstanding the ultrafast rate coefficients, we find that a classical, nonadiabatic Marcus model for electron transfer explains the experimental observations, which allows us to estimate the electronic coupling (330 cm(-1)) and reorganization (8070 cm(-1)) energies involved for thionine-[poly(dG-dC)](2) complexes. Making the simplifying assumption that other charged, pi-stacked DNA intercalators also have approximately these same values, the electron-transfer rate coefficients as a function of the driving force, DeltaG, are derived for similar molecules. The rate of electron transfer is found to be independent of the speed of molecular reorientation. Electron transfer to the thionine singlet excited state from DNA obtained from calf thymus, salmon testes, and the bacterium, micrococcus luteus (lysodeikticus) containing different fractions of G-C pairs, has also been studied. Using a Monte Carlo model for electron transfer in DNA and allowing for reaction of the dye with the nearest 10 bases in the chain, the distance dependence scaling parameter, beta, is found to be 0.8 +/- 0.1 A(-1). The model also predicts the redox potential for guanine dimers, and we find this to be close to the value for isolated guanine bases. Additionally, we find that the pyrimidine bases are barriers to efficient electron transfer within the superexchange limit, and we also infer from this model that the electrons do not cross between strands on the picosecond time scale; that is, the electronic coupling occurs predominantly through the pi-stack and is not increased substantially by the presence of hydrogen bonding within the duplex. We conclude that long-range electron transfer in DNA is not exceptionally fast as would be expected if DNA behaved as a "molecular wire" but nor is it as slow as is seen in proteins, which do not benefit from pi-stacking.


Assuntos
DNA/química , Nucleotídeos de Desoxiadenina/química , Guanosina Monofosfato/química , Poli dA-dT/química , Corantes/química , Elétrons , Substâncias Intercalantes/química , Cinética , Método de Monte Carlo , Conformação de Ácido Nucleico , Oxirredução , Fenotiazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...